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Abstract
Intraclass correlation (ICC) is a reliability metric that gauges similarity when, for example, entities

are measured under similar, or even the same, well-controlled conditions, which in MRI applica-

tions include runs/sessions, twins, parent/child, scanners, sites, and so on. The popular definitions

and interpretations of ICC are usually framed statistically under the conventional ANOVA platform.

Here, we provide a comprehensive overview of ICC analysis in its prior usage in neuroimaging, and

we show that the standard ANOVA framework is often limited, rigid, and inflexible in modeling

capabilities. These intrinsic limitations motivate several improvements. Specifically, we start with

the conventional ICC model under the ANOVA platform, and extend it along two dimensions: first,

fixing the failure in ICC estimation when negative values occur under degenerative circumstance,

and second, incorporating precision information of effect estimates into the ICC model. These

endeavors lead to four modeling strategies: linear mixed-effects (LME), regularized mixed-effects

(RME), multilevel mixed-effects (MME), and regularized multilevel mixed-effects (RMME). Com-

pared to ANOVA, each of these four models directly provides estimates for fixed effects and their

statistical significances, in addition to the ICC estimate. These new modeling approaches can also

accommodate missing data and fixed effects for confounding variables. More importantly, we

show that the MME and RMME approaches offer more accurate characterization and decomposi-

tion among the variance components, leading to more robust ICC computation. Based on these

theoretical considerations and model performance comparisons with a real experimental dataset,

we offer the following general-purpose recommendations. First, ICC estimation through MME or

RMME is preferable when precision information (i.e., weights that more accurately allocate the var-

iances in the data) is available for the effect estimate; when precision information is unavailable,

ICC estimation through LME or the RME is the preferred option. Second, even though the absolute

agreement version, ICC(2,1), is presently more popular in the field, the consistency version, ICC

(3,1), is a practical and informative choice for whole-brain ICC analysis that achieves a well-

balanced compromise when all potential fixed effects are accounted for. Third, approaches for

clear, meaningful, and useful result reporting in ICC analysis are discussed. All models, ICC formula-

tions, and related statistical testing methods have been implemented in an open source program

3dICC, which is publicly available as part of the AFNI suite. Even though our work here focuses on

the whole-brain level, the modeling strategy and recommendations can be equivalently applied to

other situations such as voxel, region, and network levels.
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1 | INTRODUCTION

Recently, reliability and reproducibility have been hot topics in science

in general and in the neuroimaging community in particular. It is known

that neuroimaging data are very noisy and a large proportion of the

fMRI variability cannot be properly accounted for. It has been reported

that less than half of the data variability can currently be explained in

the typical data analysis (Gonzalez-Castillo, Chen, Nichols, & Bandettini,

2017). For example, the typical analytical approach is to make a strong

and unrealistic assumption that a hemodynamic response is the same

across brain regions, subjects, groups, different tasks, or conditions. In

addition, even though large amounts of physiological confounding

effects are embedded in the data, it remains a daunting task to fully

incorporate the physiological noise in the model.

Recent surveys observed that about 60% of published experiments

failed to survive replication in psychology (Baker, 2015) and about 40%

in economics (Bohannon, 2016), and the situation with neuroimaging is

likely to be equally, if not more, pessimistic (Griffanti et al., 2016).

While in neuroimaging, reproducibility is typically a qualitative descrip-

tion as to whether an activation cluster is reported across many stud-

ies, the reliability of an effect estimate quantitatively describes the

variation in repeated measurements performed on the same measuring

entities (e.g., subjects in neuroimaging) under the identical or approxi-

mately the same experimental conditions (NIST, 2007). Specifically, reli-

ability can be defined as the agreement or consistency across two or

more measurements, and intra-class correlation (ICC) has been specifi-

cally developed for this purpose (Shrout & Fleiss, 1979; McGraw &

Wong, 1996).

Generally speaking, the conventional ICC metric indicates agree-

ment, similarity, stability, consistency, or reliability among multiple

measurements of a quantity. For instance, such a quantity can be the

ratings of n targets assessed by k raters or judges in a classical example

(Shrout & Fleiss, 1979). In the neuroimaging context, when the same

set of measuring entities (e.g., subjects) goes through the same experi-

ment protocol under the same conditions, ICC can be utilized to assess

the data quality. Those multiple measurements can be the effect esti-

mates from n subjects under k different replications (e.g., runs, sessions,

scanners, sites, twins, siblings, parent-child pairs, studies, assessments,

diagnoses, or analytical methods). The same quantity (rating or effect

estimate) across those k replications in the ICC definition is reflected in

the word intraclass, as opposed to the Pearson (or interclass) correlation

coefficient that reveals the linear relationship between two quantities

that can be of different nature (e.g., brain response and cortex

thickness).

Here we first review the various versions of ICC definition and

their computation formulations under their classic ANOVA platform,

and then we discuss their limitations and drawbacks as our motivations

to develop more extended models. We then describe and validate sev-

eral new, improved approaches for ICC estimation. Even though our

work mainly focuses on whole-brain data analysis in neuroimaging, the

methodologies can be applied to other contexts or fields when the

underlying assumptions are met.

2 | VARIOUS TYPES OF ICC

In this section, we introduce the three classic types of ICC, motivating

each from their basic statistical model and describing their interpreta-

tion, applicability, and generalization. Throughout this article, regular

italic letters in lower case (e.g., a) stand for scalars and random variables;

boldfaced italic letters in lower (a) and upper (X) cases for column vec-

tors and matrices, respectively; Roman and Greek letters for fixed and

random effects, respectively, on the right-hand side of a model equa-

tion. In the neuroimaging context, let yij be the effect estimate (BOLD

response in percent signal change or connectivity measurement) at the

ith level of within-subject (or repeated-measures) factor A and the jth

level (usually subject) of factor B (i51;2; . . . ; k; j51;2; . . . ; n). When

both factors A (e.g., runs, sessions, scanners, sites) and B are modeled as

random effects, we have a two-way random-effects ANOVA system,

yij5b01pi1kj1eij; (1)

where b0 is a fixed effect or constant representing the overall average,

pi is the random effect associated with the ith level of factor A, kj repre-

sents the subject-specific random effect, and eij is the residual. With the

random variables pi, kj, and eij assumed to be independent and identi-

cally distributed with Nð0;r2
pÞ; Nð0;r2

kÞ, and Nð0;r2
e Þ, respectively, the

associated ICC for the model (Equation 1) is defined as

ICCð2;1Þ5q25
r2
k

r2
p1r2

k1r2
e

; (2)

and is numerically evaluated by

q̂25
MSk2MSe

k
n ðMSp2MSeÞ1MSk1ðk21ÞMSe

; (3)

where MSp; MSk, and MSe are the mean squares1 (MSs) associated

with the factor A effects pi, subject effects kj and the residuals eij,

respectively, in the ANOVA framework (Equation 1). The definition

(Equation 3) is usually referred to as ICC(2,1) in the literature (Shrout &

Fleiss, 1979; McGraw &Wong, 1996).

To make statistical inference, Fisher’s transformation for ICC value

q (McGraw & Wong, 1996),

z5
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn22Þðk21Þ

k

r
ln

11ðk21Þq
12q

(4)

approximately follows a standard Gaussian N(0, 1) under the null

hypothesis H0: q50, and offers a solution for significance testing.

However, a better approach is to formulate an F-statistic (McGraw &

Wong, 1996),

F2ðn21; nðk21ÞÞ5MSk
MSe

; (5)

whose distribution is exact under H0: q250, unlike the Fisher transfor-

mation (Equation 4).

The meaning of the ICC can be interpreted in four common

perspectives:

1Under the ANOVA formulation, the mean squares of a factor is the sum of

squares for the factor divided by the associated degrees of freedom.
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i As the definition (Equation 2) itself indicates, the ICC is the pro-

portion of total variance that is attributed to a random factor (or

accounted for by the association across the levels of the random

factor). For instance, if the variance associated with subjects

increases, subjects would be less similar while the levels of factor

A (e.g., runs) tend to be relatively more similar, leading a higher

ICC value. This proportionality interpretation is straightforwardly

consistent with the non-negativity of ICC and its range of ½0;1�.
ii The ICC is the expected correlation between two effect estimates

that are randomly drawn among the levels of factor A within the

same level of factor B. For instance, say that ICC(2,1) for an fMRI

study shows the relatedness among multiple runs. Specifically,

with the assumptions in the model (Equation 1), ICC(2,1) is essen-

tially the Pearson correlation of the effect estimates between any

two levels (e.g., runs) of factor A, i1, and i2 (i1 6¼ i2),

Corrðyi1 j; yi2 jÞ5
Covðpi11kj1ei1 j;pi21kj1ei2 jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðpi11kj1ei1 jÞVarðpi21kj1ei2 jÞ

p 5
r2
k

r2
p1r2

k1r2
e

:

However, it is worth emphasizing that this equivalence between ICC

and Pearson correlation holds because of the following fact: ICC is a

relationship gauge between, for example, any two runs in light of the

same physical measure (e.g., BOLD response in ICC(2,1) as opposed to

Pearson correlation between, for example, weight and height). When a

run has generally a higher (or lower) effect estimate relative to the

group mean effect, or when there is some extent of consistency among

subjects within each run, then those effect estimates are correlated,

and the ICC formulation (Equation 2) basically captures that correlation

or consistency.

i ICC is an indicator of homogeneity of the responses among the

levels (e.g., subjects) of the random factor B: a higher ICC means

more similar or homogeneous responses. On the other hand, when

an ICC value is close to zero, the effect estimates associated with

a factor A level are no more similar than those from different sub-

jects, and the random effect components could be removed from

the model (Equation 1).

ii ICC reflects the extent of common conditions (e.g., same task and

scanning parameters) that the effect estimates share. The ICC

would be higher if effect estimates associated with a subject were

under more similar environments.

The decision of an explanatory variable in a model as either fixed or

random effects can be subtle, and the distinction is usually determined

in light of the nature of the factor: interchangeability of factor levels, or

whether there exists some systematic difference across the factor lev-

els. For example, subjects are often considered as the levels of a ran-

dom factor because: (a) they are each recruited through a random

sampling process as representatives (or samples) of a potential or con-

ceptual population (as embodied in the assumption of Gaussian distri-

bution Nð0;r2
kÞ for the random effects kj in the model (Equation 1)),

achieving the goal of generalization in statistical inferences; (b) their

order does not matter in the model and can be randomly permuted

due to exchangeability; and (c) a particular set of subjects can, in prac-

tice, be replaced by another set. In contrast, patients and controls are

typically handled as fixed effects because of the lack of exchangeabil-

ity. In neuroimaging scanners or sites can be thought of as the levels of

either a random- or fixed-effects factor, depending on whether the

scanning parameters are similar or different across scanners or sites.

Similarly, runs or sessions should be treated as random effects if no sig-

nificant systematic difference exists across runs or sessions; otherwise,

they should be modeled as fixed effects when habituation or familiarity

effect of the task is substantial.

Because of the distinction between fixed and random effects,

there is an alternative ICC definition in which the factor A (e.g., runs,

sessions, scanners, sites) is modeled as fixed effects in a two-way

mixed-effects ANOVA structure,

yij5b01bi1kj1eij; (6)

where bi and kj represent the fixed effects2 of factor A and random

effects of subjects (or families, in the case of parent versus child),

respectively. The associated ICC is defined as

ICCð3;1Þ5q35
r2
k

r2
k1r2

e

; (7)

which has the same formula as Equation 2, but we note that the pres-

ence of bi here means that the two models would have different esti-

mates of r2
e . The ICC in this case can be computed as

q̂35
MSk2MSe

MSk1ðk21ÞMSe
; (8)

with an exact F-statistic,

F3ðn21; ðn21Þðk21ÞÞ5MSk
MSe

; (9)

for significance testing under the null hypothesis H0: q350.

The two ICC definitions, Equations 2 and 7, are popularly notated

as ICC(2,1) and ICC(3,1), respectively, and are sometimes referred to as

“intertest ICCs,” extensions of the classic inter-rater reliability (Shrout

& Fleiss, 1979). When there are only two levels for factor A (k52),

these two versions are usually referred to as test–retest reliability

measures (Zuo & Xing, 2014). When factor A represents scanning sites,

these two ICC types are aligned with another term, multisite reliability,

in the literature. Yet there is another ICC type in which the effects of

factor A are not explicitly modeled. A prototypical example is the sce-

nario with the effect estimates of twins from each family where there

is no meaningful way to assign an order or sequence among the levels

of factor A consistently among the levels of factor B (e.g., ordering

twins within each family). Let yij be the effect estimate from the ith

level of factor A and jth level of factor B (e.g., the ith member of family

2For simplicity, the notations for the model terms and for the corresponding

variance and MS terms in the ICC formulas are undifferentiated across

models. To avoid confusion, we emphasize that the values for the same

notation term may change across models. For example, residuals eij and its

variance estimate r̂2
e may differ, depending on how the effects associated

with factor A are modeled.
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j) (i51;2; . . . ; k; j51;2; . . . ; n). A one-way random-effects ANOVA can

be formulated to decompose the response variable or effect estimate

yij as

yij5b01kj1eij; (10)

where kj codes the random effect of the jth level of factor B (e.g., fam-

ily j).

The ICC for the model in Equation 10 is defined as

ICCð1;1Þ5q15
r2
k

r2
k1r2

e

; (11)

which can be estimated similarly as (Equation 8),

q̂15
MSk2MSÐ

MSk1ðk21ÞMSÐ ; (12)

where MSk and MSe are the mean squares (MSs) associated with the

family effects kj and the residuals, respectively, in the ANOVA frame-

work of model (Equation 10). The testing statistic for Equation 11 has

the form as Equation 5, and the definition (Equation 11) is usually

referred to as ICC(1,1) in the literature (Shrout & Fleiss, 1979; McGraw

& Wong, 1996).

The four interpretation perspectives for ICC(2,1) also apply directly

to other two types. For example, with the assumptions in the model

(Equation 6), ICC(3,1) is a special case of Pearson correlation of the

effect estimates between any two levels of factor A, i1, and i2 (i1 6¼ i2),

Corrðyi1 j; yi2 jÞ5
Covðkj1ei1 j;kj1ei2 jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðkj1ei1 jÞVarðkj1ei2 jÞ

p 5
r2
k

r2
k1r2

e

:

Nevertheless, ICC(3,1) is more similar to Pearson correlation than

ICC(1,1) and ICC(2,1) in the sense that each level of factor A is assumed

to have a different mean, but it remains unlike Pearson correlation as the

assumption of same variance holds across the levels of factor A for all the

three ICC definitions. In addition, ICC(2,1) and ICC(3,1) are sometimes

called absolute agreement and consistent agreement, respectively. The

distinction between these two ICC types can be hypothetically illustrated

by paired effect estimates (e.g., in percent signal change for an fMRI

experiment) from five subjects during two sessions (Table 1). The three

ICC values are all nonnegative because they represent a proportion of

total variance embedded in the data, and they generally follow a sequen-

tial order (Shrout & Fleiss, 1979): ICCð1;1Þ � ICCð2;1Þ � ICCð3;1Þ.
The first index in the ICC(�; �) notation specifies the ICC type, while

the second indicates the relationship between two single measure-

ments (e.g., between two twins for ICC(1,1) or two levels of factor A

for ICC(2,1) and ICC(3,1)). For each of the three single measurement ICC

types, there is another version, called average measurement ICC, which

shows the relationship between two sets of average measurements

among the k levels of factor A, and with notations ICC(1,k), ICC(2,k),

and ICC(3,k), they are similarly defined as the single measurements ver-

sion except that the terms in the denominator, r2
e ; r

2
p1r2

e , and r2
e , for

ICC(1,1), ICC(2,1), and ICC(3,1), respectively, are each scaled by a factor

of k21. By definition, the average measurement ICC is larger than its

single measurements counterpart. In addition, a similar correlation

interpretation about the average measurement ICCs can be seen with,

for example, ICC(2,k),

Corr
1
k

Xk
i51

yð1Þij ;
1
k

Xk
i51

yð2Þij

 !

5

Cov 1
k

Xk
i51

pð1Þi 1kj1 1
k

Xk
i51

eð1Þij ; 1k

Xk
i51

pð2Þi 1kj1 1
k

Xk
i51

eð2Þij

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var 1

k

Xk
i51

pð1Þi 1kj1 1
k

Xk
i51

eð1Þij

 !
Var 1

k

Xk
i51

pð2Þi 1kj1 1
k

Xk
i51

eð2Þij

 !vuut
5

r2
k

1
k r

2
p1r2

k1
1
k r

2
e

;

where the superscript such as those in yð1Þij and yð2Þij indicates a particu-

lar set of data substantiation, and thus pðmÞ
i �iid Nð0;r2

pÞ; kðmÞ
j �iid

Nð0;r2
kÞ; eðmÞ

ij �iid Nð0;r2
e Þ. As the average measurement ICC is less

popular in practice, we hereafter focus on their single measurement

counterpart, but our modeling work below can be directly extended to

the average measurements ICC.

3 | LITERATURE SURVEY OF ICC FOR
NEUROIMAGING

ICC has been applied to neuroimaging data for over 10 years, mainly to

examine reliability under various scenarios. In particular, ICC(2,1) has

been largely adopted in the field, using the ANOVA approach. ICC(2,1)

has been used to show reliability under various scenarios, for example,

at the regional level (Fiecas et al., 2013), at the network level for

resting-state (Cao et al., 2014; Guo et al., 2012), at the whole-brain

level with ANOVA (Kristo et al., 2014; Quiton, Keaser, Zhuo, Gullapalli,

& Greenspan, 2014; Zanto, Pa, & Gazzaley, 2014) and with linear

mixed-effects (LME) modeling using a precursor of 3dICC in AFNI (Fie-

cas et al., 2013; Haller et al., 2017; White et al., 2016). ICC(3,1) has

been applied at the regional level for task-related fMRI data (C�aceres,

Hall, Zelaya, Williams, & Mehta, 2009; Jaeger et al., 2015) and for MEG

data (Recasens & Uhlhaas, 2017), at the network level for resting-state

data (Braun et al., 2012), on the egional homogeneity of resting-state

data (Zuo et al., 2013), and at the whole-brain level for task-related

fMRI data, using ANOVA in PASW and/or Matlab (Brandt et al., 2013;

C�aceres et al., 2009) and in SAS (Fournier, Chase, Almeida, & Phillips,

2014). It should be noted that in many cases the ICC type adopted in a

study was not clearly stated, often due to the ambiguity in terms of the

model involved (Lin et al., 2015; Shah, Cramer, Ferguson, Birn, &

Anderson, 2016; Zuo et al., 2010b).

There have been occasions in which ICC(1,1) and ICC(3,1) have

been explicitly employed at times in the literature. For example, ICC

(1,1) has been applied to brain networks based on resting-state fMRI

data (Wang et al., 2011), to functional near-infrared spectroscopy

TABLE 1 Hypothetical effect estimates (e.g., BOLD response in
percent signal change) with a relationship from five subjects during
two sessions (y2j5y1j10:2; j51;2; . . . ;5; ICC(1,1)50.43; ICC(2,1)5
0.56; ICC(3,1)51, Pearson correlation r51)

Subject s1 s2 s3 s4 s5

Session 1, y1j 0.1 0.2 0.3 0.4 0.5

Session 2, y2j 0.3 0.4 0.5 0.6 0.7
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(fNIRS) data (e.g., Bhambhani, Maikala, Farag, & Rowland, 2006; Plichta

et al., 2006, 2007; Tian et al., 2012; Zhang et al., 2011), and to resting-

state data at the whole-brain level (Zuo et al., 2010a), and to task-

related data through LME at the regional level (T€oger et al., 2017).

However, we note that in a large number of publications, the adoption

of the ICC type was neither explicitly explained nor justified, which

makes precise interpretation difficult.

On the whole-brain level, in addition to the ICC computation

through LME as implemented in the open source AFNI program

3dLME (Chen, Saad, Britton, Pine, & Cox, 2013) and in DPARBI (Yan,

Wang, Zuo, & Zang, 2016), there have been a few Matlab toolboxes

publicly available: three using ANOVA (C�aceres et al., 2009; Fiecas

et al., 2013; Molloy & Birn, 2014), and one using both ANOVA and

LME in Matlab (Zuo et al., 2010b). The concept of ICC has also been

extended to characterize cross-subject heterogeneity when the effect

estimate precision is incorporated into fMRI group analysis (Chen,

Saad, Nath, Beauchamp, & Cox, 2012), and to reveal the relatedness

among subjects in intersubject correlation (ISC) analysis with data from

naturalistic scanning (Chen, Taylor, Shin, Reynolds, & Cox, 2017a).

To address the reliability and reproducibility issue on a large scale,

the Consortium for Reliability and Reproducibility (CoRR) has been

established to explore the test–retest reliability as a minimum standard

for methods development in functional connectomics (Zuo et al.,

2014). With thousands of datasets openly available, reliability could be

tested through a variety of perspectives. One specific such effort was

demonstrated in estimating both intra- and cross-subject variability as

well as the reliability of multiple metrics with a resting-state study of

10 sessions across 30 subjects (Chen et al., 2015). A multisite resting-

state study (Noble et al., 2017) recently showed that a relatively poor

reliability with a short scan (e.g., 5 min) could be improved to some

extent with a longer scan (e.g., 25 min). A low reliability for resting-

state data was also seen with an extended version of ICC proposed as

a global measure of reliability across an ensemble of ROIs (Shou et al.,

2013).

4 | MOTIVATIONS FOR FURTHER
MODELING WORK

The ANOVA framework has been adopted in computing ICC through

the MS terms largely for historical reasons because ANOVA was devel-

oped and became widely adopted in early twentieth century: the

framework is widely introduced in basic statistics textbooks, and the

MS terms are efficient to compute. Various computational tools are

widely available through ANOVA (e.g., packages irr and psych in R).

However, the ANOVA approach does have both limitations for inter-

pretation and practical drawbacks for calculation:

i Negative value. Although the ICC value should be theoretically

nonnegative per its definition as the proportionality of the total

variance (as in Equation 2), its estimation (as in Equation 3), may

become negative due to the fact that the numerator in the com-

putational formula is the difference between two MS terms. Such

cases are uninterpretable. Importantly, in neuroimaging negative

ICCs are not rare occurrences, with a large number of such voxels

appearing in the brain (and in any tissue type).

ii Missing data. In common practical situations, missing data may

occur. As data balance is essential in partitioning the MS terms,

ANOVA cannot properly handle missing data due to the break-

down of the underlying rigid variance–covariance structure. For

example, the data for the six subjects who missed scanning for

one session as shown in Table 2 would have to be abandoned

due to the rigidity of the ANOVA structure.

iii Confounding effects. Under some circumstances it might be desira-

ble to incorporate explanatory variables into a model, so that the

variability due to those confounding effects can be properly

accounted for. For example, subject groupings (e.g., sex, handed-

ness, genotypes), age, and reaction time are typical candidates in

neuroimaging that often warrant their inclusion in the model.

However, the rigid ANOVA structure usually does not easily allow

for such inclusions.3

iv Sampling errors. Conceptually, the residual term eij in the ICC

model can be considered to represent measurement or sampling

errors. In other words, the underlying assumption is that all the

effect estimates yij share the same sampling variance for the mea-

surement errors. However, unlike the typical situation in other

fields where the effect estimates are usually direct measurements

(e.g., scores assessed by raters), the effect estimates in neuroimag-

ing are generally obtained through a data reduction process with

a regression model for each subject. That is, each effect estimate

is associated with a standard error that indicates the precision4

information of the estimation, and heterogeneity or (possibly

unfounded) heteroscedasticity is expected because the standard

error varies across subjects and between twins or parents/

TABLE 2 A hypothetical study of 17 subjects with missing data (1: available; 0: missing)

Subject s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17

Session 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Session 2 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1

Session 3 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1

3One exception is that, when a subject-grouping factor (e.g., males versus

females) is considered, it is possible to construct the involved MS terms in

the special case of having exactly equal number of subjects across all

groups. However, even for such a balanced scenario, specific MS terms

would have to be derived for each ICC computation formula.
4Precision is defined as the reciprocal of the variance.
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children, across runs/sessions, or scanners/sites. When the stand-

ard error for the effect estimate is ignored in favor of a homosce-

dasticity assumption in the ANOVA formulation (as widely

practiced in neuroimaging when computing the ICCs, and in group

analysis), it raises the question: what is the impact for the ICC

estimate when heterogeneity of standard error is substantially

present across the measuring entities?

v Type selection. The applicability of ICC(1,1) is limited to situations

where the levels of the repeated-measures factor are measuring

entities that are difficult to assign meaningful orders or sequences

such as twins. However, between ICC(2,1) and ICC(3,1), the

choice becomes challenging for the investigator, with nontrivial

impact on the ICC results: other than some prior knowledge about

the potential existence of confounding effects or systematic dif-

ference across the levels of the repeated-measures factor, there is

no solid statistical tool under ANOVA to leverage one choice over

the other. For example, is there any statistical evidence that could

allow us to decide unequivocally between ICC(2,1) and ICC(3,1)

by treating runs or sessions as random or fixed effects? In addi-

tion, the typical whole-brain analysis through a massively univari-

ate approach at the voxel level may further aggravate the choice.

Our ICC modeling work here hinges around these five limitations of

the ANOVA approach. We first discuss four alternative modeling

approaches as extensions to the ANOVA framework, and then use an

experimental dataset to examine the performance of the various mod-

eling methods. Each of the four models addresses the limitations and

drawbacks we discussed above, and provides incremental improve-

ments (Table 3). Further discussion is presented at the end. The imple-

mentations of our modeling work are publicly available for voxel-wise

computation through program 3dICC as part of the AFNI suite (Cox,

1996). As ICC(1,1) is typically adopted in neuroimaging for special cases

of studies with twins, our focus here is on the other two types due

their wider applicability. Nevertheless, the modeling strategies dis-

cussed here can be directly expanded to ICC(1,1), and possibly can be

further applied to other fields, when appropriate, even though our

focus remains on neuroimaging.

5 | THEORY: THREE EXTENDED ICC
MODELS

Here we propose four mixed-effects models: linear mixed-effects

(LME), regularized mixed-effects (RME), multilevel mixed-effects

(MME), and regularized multilevel mixed-effects (RMME). These four

models are introduced in a sequential order, reflecting their incremental

improvements.

5.1 | Linear mixed-effects (LME) modeling

Whenever multiple values (e.g., effect estimates from each of two

scanning sessions) from each measuring entity (e.g., subject or family)

are correlated (e.g., the levels of a within-subject or repeated-measures

factor), the data can be formulated with an LME model, sometimes also

referred to as a multilevel or hierarchical model. One natural extension

to the ANOVA modeling in Equations 1, 6, and 10 is to simply treat the

model conceptually as LME, reformulating neither the equations nor

their ICC definitions. This LME approach for ICC has previously been

implemented in the program 3dLME (Chen et al., 2013) for voxel-wise

data analysis in neuroimaging. For example, the ICC(2,1) model is an

LME case with two crossed random-effects terms, whose applications

can be seen under other circumstances such as intersubject correlation

analysis (Chen et al., 2017a) and psycholinguistic studies (e.g., Baayen

et al., 2008).

However, the application of LME methodology to ICC does not

stop at the conceptual level, and in fact it has several advantages in

some aspects of computation where limitations are present under the

ANOVA framework. Specifically, the variances for the random effects

components and the residuals are directly estimated through optimiz-

ing the restricted maximum likelihood (REML) function, and thus the

ICC value is computed with variance estimates r̂2
p ; r̂

2
k , and r̂2

e , through

the definitions in Equations 11, 2, 7, instead of with their counterparts

with MS terms, (Equations 12, 3, 8), under ANOVA. Therefore, in con-

junction with the theoretical quantities, the estimated ICCs are non-

negative by definition, avoiding the interpretability difficulties that

ANOVA-based estimates can present when negative. Similarly, the two

F-statistic formulas (Equations 5 and 9) can be expressed in terms of

variance estimates as well,

F5
kr̂2

k

r̂2
e

11: (13)

Another convenient byproduct from the LME model interpretation

of (Equation 1) for ICC(2,1) is that the ICC for the absolute agreement

between any two measuring entities (e.g., subjects) can be easily

obtained through ratio among the variances,

q̂25
r̂2

p

r̂2
p1r̂2

k1r̂2
e

;

which is usually not discussed under the ANOVA framework.

In regard to the type selection choice between ICC(2,1) and ICC

(3,1), which is an ambiguous one to some extent in the ANOVA frame-

work, in the LME model (Equation 6), the fixed effects associated with

the levels of the repeated-measures factor A can now be directly exam-

ined through statistical assessment: If the fixed effects bi can be

deemed negligible (i.e., no confounding effects nor systematic

TABLE 3 Issues in ICC computations under ANOVA, and summary
of which mixed-effects models can (�) or cannot (�) address each

Issues ANOVA LME RME MME RMME

Negative ICC � � � � �

Zero ICC � � � � �

Missing data � � � � �

Confounding effects � � � � �

Sampling error � � � � �

Type selection � � � � �
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differences across the factor A levels), then ICC(2,1) offers a better

metric because the model (Equation 1) is more parsimonious. We will

elaborate this point later through an experimental dataset.

Furthermore, missing data can be naturally handled in LME

because parameters are estimated through the optimization of the

(restricted) maximum likelihood function, where a balanced structure is

not required. As long as the missing data can be considered to occur

randomly without structure (i.e., no systematic pattern exists among

the missing data), and there are enough measuring entities present

(e.g., n � 10) for each level of the repeated-measures factor, then the

computation can still be performed. Specifically, if no relationship exists

between whether a data point is missing and any values in the data set

(missing or observed), the situation is considered missing completely at

random (MCAR); missing at random (MAR) occurs if the missingness is

not fully random (e.g., men being more likely to participate in fMRI

scanning), but it can be fully controlled by relevant variables (e.g., incor-

porating sex as a covariate). When a situation with MCAR or MAR

occurs, the conventional ANOVA or GLM cannot handle missing data

because of the loss of the rigid variance-covariance structure while

LME does not rely on such a rigid structure.

In addition, the extension to incorporate confounding effects is

readily available through adding more fixed-effects terms into the

model. For instance, the ICC(2,1) model (Equation 1) can be expanded

to an LME model with two crossed random-effects components,

yij5b01
Xm
l51

blx
ðlÞ
j 1pi1kj1eij; (14)

where xð1Þ; xð2Þ,. . ., xðmÞ are m explanatory variables (e.g., sex, age) that

can be either categorical or quantitative, and b1, b2,. . ., bm are their cor-

responding fixed effects.

For the convenience of further discussion, we adopt the conven-

tional LME platform for ICC with a more generic and inclusive formula-

tion (Pinheiro and Bates, 2004; Chen et al., 2017a) than (Equations 10,

1, 6). The following formulation contains all of the aforementioned

models as special cases, and will be further discussed hereafter:

y5Xb1Zh1e; (15)

where the known vector5 ykn315vecðyijÞ is the vectorization or

column-stacking of effect estimates yij; bðm11Þ31 contains the unknown

fixed-effects to be estimated; the known model (or design) matrix

Xkn3ðm11Þ codes the explanatory variables for the fixed effects; the

known model (or design) matrix Z is usually a column-wise subset of X;

u contains the unknown random effects to be estimated; and ekn31

contains the unkown residuals. The distributional assumptions are that

u�Nð0;VÞ, and e�Nð0;RÞ, where V and R are the unknown variance–

covariance matrices for the random effects u and residuals e, respec-

tively; also, u and e are independent of each other (i.e., Covðu; eÞ50).

For the ICC context with no missing data, R5r2
e Ikn; for ICC(1,1) and

ICC(3,1), V5r2
kIkn , and for ICC(2,1), V5In � diagðr2

p;r
2
kÞ.

For those ANOVA cases where a negative ICC value would occur

due to the subtraction between two MS terms, LME avoids negativity

by having a lower boundary at 0, via a positive definiteness for the var-

iance–covariance matrix when estimating the variance components

through optimizing the likelihood function within the nonnegative

domain of the variance components. With these considerations in

mind, the question for those ambiguous values in the LME framework

becomes: are those effects within a region fully uncorrelated across

the levels of the repeated-measures factor; or is the zero variance esti-

mate simply some artifact providing a zero; or is it a consequence of

convergence failure in the optimization algorithms when solving LME?

This is addressed by introducing an improvement to the conventional

LME by regularizing the variance components. We note that all of the

advantages of LME over ANOVA discussed above also carry over to

the other variants of mixed-effects models below.

5.2 | Regularized mixed effects (RME) model

When a zero variance estimate occurs, typically the corresponding like-

lihood profile is decreasing or close to a flat line at zero. Such a sce-

nario may occur when the sample size is small or when the signal-to-

noise ratio is low, derailing the LME capability to provide a meaningful

variance estimate in this near-zero boundary value of zero. It is

unfortunately not rare to have either a small number of subjects or a

neuroimaging signal submerged with noise. Compared to a negative

ICC value (or negative variance estimate r2
k), having a floor for r2

k at 0

avoids an uninterpretable situation; however, even the zero estimate

for ICC may be questionable to some extent: do we truly believe that

all the subjects in a study have exactly the same BOLD response or

average effect across the levels of factor A, as implied by such a value?

Variances in LME are estimated by optimizing REML, which is

equivalent to the posterior marginal mode, averaging over a uniform

prior on the fixed effects. To pull out of the trapping area surrounding

the likelihood boundary, one possibility is to apply a weakly informative

prior distribution for the variance parameters. This regularization

approach can be conceptualized as forming a compromise between

two competing forces: the anchoring influence of the prior information

and the strength of the data. With a reasonable prior distribution, one

may prevent a numerical boundary estimate from occurring by “nudg-

ing” the initial variance estimate by no more than one standard error,

leading to negligible influence from the prior when the information

directly from the data should be fully relied upon (Chung, Rabe-

Hesketh, Dorie, Gelman, & Liu, 2013).

Here we adopt a weakly informative prior distribution, gamma

density function (Chung et al., 2013), for a variance component v in the

LME model (i.e., r2
p and r2

k in Equation 1, r2
k in Equation 6),

hðv;h; jÞ5 jh

CðhÞ v
h21e2jv ;h; j>0; (16)

where h and j are the shape and rate (inverse scale) parameters,

respectively. In practice, the gamma density function has two desirable

properties for our nudging purpose here: (a) a positive and constant

derivative at zero when h52, guaranteeing a nudge toward the posi-

tive direction, and (b) hð0;h; jÞ50 when h>1, allowing the variance to

5Without loss of generality, the dimensions shown here for vectors and

matrices are assumed to have no missing data, by default. When missing

data occur, the dimensions can be adjusted accordingly.
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hit the boundary value of zero when the true value is zero. With h52,

the prior is uninformed (and improper) within ð0;1Þ when j

approaches 0, and becomes gradually informative (but still weak) when

j is away from 0 (Chung et al., 2013). Therefore, a parameter set of

h52 with a small rate parameter j produces a positive estimate for

the variance but does not overrule the data itself.

Typical Bayesian methodology involves estimating the posterior

distribution through sampling with simulations (e.g., Markov chain

Monte Carlo). However, here the prior density can be directly incorpo-

rated into the likelihood function for LME because of the conjugacy of

the exponential families, hence no simulations are required to nudge

the variance estimate out of the boundary value for the ICC computa-

tion. As an added benefit, there is usually little extra computational

cost added to the classic LME computations. In fact, an overall higher

efficiency can be achieved in some circumstances, because the prior

may speed up the convergence process otherwise stuck or slowed in

the trapping area close to the boundary.

With both classic LME and its “nudging” version, RME, there

remains one last limitation mentioned in the Introduction to be over-

come for ICC estimation: How can the LME model utilize the precision

information (i.e., standard error) associated with the effect estimates

from the individual subject analysis? Would the precision information

provide a more accurate partitioning among the variance components

including situations when ANOVA renders negative ICC or when LME

forces r2
k to be 0?

The effect estimates of interest in neuroimaging are usually not

raw data or direct measures, but instead regression coefficients as out-

put from a time series regression model; as such, these effect estimates

have their own measurement uncertainties or confidence intervals. A

close inspection of the LME model for ICC (Equations 10, 1, 6) reveals

that the residual term eij represents the uncertainty embedded in the

effect estimates. An underlying assumption in the classic LME model

holds that the measurement errors share the same uncertainty:

eij �iid Nð0;r2
e Þ. As the effect estimates come from a time series regres-

sion model separately for each subject, their precision is not necessarily

the same and may vary significantly across subjects for various reasons,

including variations in trial sequence, data points, and outliers. There-

fore, in practice, each effect estimate is associated with a different var-

iance for its measurement error: eij�Nð0;r2
ij Þ. The true value of r2

ij is

usually unknown, but its estimation is readily available, conveniently

embedded in the denominator of the t-statistic for each effect estimate

out of the individual subject analysis. Such an approach has previously

been developed for simple group analysis, with the standard error for

the effect estimate incorporated into the group model in neuroimaging

(e.g., FLAME in FSL (Woolrich, Behrens, Beckmann, Jenkinson, & Smith,

2004); 3dMEMA (Chen et al., 2012)). Here we apply the same

approach to ICC computation for the situation when precision informa-

tion is available.

5.3 | Multilevel mixed-effects (MME) modeling

Here we extend the LME model (Equations 10, 1, 6), through replacing

the assumption eij�Nð0;r2
e Þ with an unknown parameter r2

e in the

model by eij�Nð0;r2
ij Þ, where the variance estimate r̂2

ij for r2
ij is

assumed to be available, which is usually the case for task response.

We call this approach multilevel mixed-effects (MME) modeling, with

the term multilevel reflecting the fact that the modeling approach bor-

rows part of a methodology typically adopted in robust meta-analysis

when summarizing across previous studies, each of which provided

both effect estimate and its standard error. The MME counterpart for

the standard LME formulation (Equations 15) is extended to have the

assumption R5diagðvecðr̂2
ij ÞÞ.

Although computationally more sophisticated due to the involve-

ment of more than one variance component in the case of the model

(Equation 1) for ICC(2,1), the basic numerical scheme remains similar to

our previous work for group analysis (Chen et al., 2012). That is, the

variance components for the random effects are iteratively solved

through optimizing REML, with the estimates r̂2
ij for measurement pre-

cision playing a weighting role: an effect estimate yij with a smaller (or

larger) r̂2
ij has a larger (or smaller) impact on the estimation of the var-

iance components and fixed effects. It is this strategy of differential

weighting that separates MME from the previous models in which

each of the effect estimates is treated equally.

One adjustment for MME specific to the ICC case is the following.

The variance for the residuals, r2
e , in the ICC definitions under all other

models is no longer available, due to the replacement of the residual

term with an unknown variance by the measurement error with an esti-

mated variance. In its place, we substitute r̂2
e with the weighted (or”

typical”) average ðr̂2
e ÞW—instead of the arithmetic average—of the sam-

ple variances r̂2
ij in light of the generic model (Equation 15) (Higgins &

Thompson, 2002; Viechtbauer, 2010), where

ðr̂2
e ÞW5

T2p

trðW2WXðXTWXÞ21XTWÞ ; (17)

and T is the total number of data points in y (where T5 kn if no missing

data occur); p is the column rank of X; trðÞ denotes the trace operator;

X and W5R215diag 1
r̂2

11
; . . . ; 1

r̂2
kn

� �
are the model matrix for the fixed

effects in the model (Equation 15) and the weighting matrix, respec-

tively. The differential weighting is reflected in the heterogeneous diag-

onals of the variance–covariance matrix R for the measurement errors,

which reduces (Equation 17) to a simplified form (Higgins & Thompson,

2002) of ðr̂2
e ÞW in the case of no missing data and no explanatory vari-

ables, that is, X51kn31, in the model (Equation 15),

ðr̂2
e ÞW5

kn21X
i;j

wij2

P
i;j
w2

ijP
i;j
wij

5
1

1
kn21 X2

X
i;j

wij

X
wij

 ! ; (18)

where the weights wij5
1
r̂2

ij
, and the total precision

X5
P

i;j wij; i51;2 . . .; k; j51;2; . . . ; n. The expression for ðr̂2
e ÞW in

Equation 18 can be intuitively interpreted as the following: the denomi-

nator is the difference between the total precision and the weighted

mean precision, scaled by the degrees of freedom, kn21.

5.4 | Regularized MME (RMME)

A zero variance estimate may still occur under MME for the same rea-

son as in LME, namely that the corresponding likelihood profile peaks
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at zero. Similarly, the same gamma density function (Equation 16) can

be adopted as a weakly informative prior distribution (Chung et al.,

2013), for a variance component v in the MME model (e.g., see the

example in Equation 16 here), parallel to the extension from LME to

RME. Here, as well, since no posterior samplings are involved in the

process, the prior sometimes can even speed up the convergence pro-

cess compared to MME. We note that RMME solves all the issues

raised here, with the current ANOVA framework, as summarized in

Table 3.

6 | PERFORMANCE COMPARISONS
AMONG THE MODELS

6.1 | Model implementations

Here, we have discussed three types of ICC, each of which can be esti-

mated through five modeling strategies (ANOVA, LME, RME, MME,

and RMME), leading to a total of 15 scenarios with an accompanying

F-statistic defined by either Equation 5. These 15 models and the cor-

responding F-statistics are all implemented in a publicly available pro-

gram 3dICC in AFNI, making use of the R packages psych (Revelle,

2016), lme4 (Bates, Maechler, Bolker, & Walker, 2015), blme (Chung

et al., 2013), and metafor (Viechtbauer, 2010). The program 3dICC

takes a three-dimensional dataset as input for whole-brain voxel-wise

analysis, but it can also be utilized to analyze a single voxel, region, or

network. Additionally, parallel computing is available with multiple

CPUs through the R package snow (Tierney, Rossini, Li, & Sevcikova,

2016). For each ICC model except ANOVA, the fixed effects (intercept

or group average effect for each of the three models, as well as addi-

tional comparisons among factor A levels for ICC(3,1)) and their corre-

sponding t-statistics are provided in the output from 3dICC, in addition

to ICC and the associated F-statistic value.6

6.2 | Experimental testing dataset

To demonstrate the performances of our four proposed modeling

approaches in comparison to ANOVA, we utilize experimental data

from a previous fMRI study (Haller et al., 2017). Briefly, 25 healthy vol-

unteers (mean age513.97 years, SD52.22 years, range510.04–

17.51 years; 60% female) were asked to judge the gender of happy,

fearful, and angry face emotions. Each emotion was displayed at three

intensities (50%,100%, and 150%). A neutral condition, representing

0% intensity, was included for each face emotion (i.e., three neutral

subsets were created, one for each face emotion). MRI images were

acquired in a General Electric 3T scanner (Waukesha, WI, USA), and

the participants completed two MRI scanning sessions approximately

two-and-a-half months apart (mean575.12 days, SD515.12 days,

range: 47–109 days). The fMRI echoplanar images (EPIs) were collected

with the following scan parameters: flip angle5508, echo time525

ms, repetition time52300 s, 47 slices, planar field of view5240 3

240 mm2, acquisition voxel size52.5 3 2.5 3 3 mm3, and three runs

with 182 volumes for each in a total acquisition time of 21 min. The

parameters for the anatomical MPRAGE images were: flip angle578,

inversion time5425 ms, and acquisition voxel size51 mm isotropic.

The EPI time series went through the following preprocessing

steps in AFNI: de-spiking, slice timing and head motion corrections,

affine alignment with anatomy, nonlinear alignment to a Talairach tem-

plate TT_N27, spatial smoothing with a 5 mm full-width half-maximum

kernel and scaling by the voxel-wise mean. Individual TRs and the

immediately preceding volume were censored if (a) the motion shift

(defined as Euclidean norm of the derivative of the translation and

rotation parameters) exceeded 1 mm between TRs; or (b) more than

10% of voxels were outliers.7 Only trials with accurate gender identifi-

cation were included in the final analysis, but incorrect trials were also

modeled as effects of no interest. Separate regressors were created for

each of 13 event types (i.e., 30 trials for each face emotion at each

intensity, neutral trials represented by three regressors of 30 trials

each, and incorrect trials). Six head motion parameters and baseline

drift using third order Legendre polynomials were included as addi-

tional regressors. The two sessions were analyzed separately, but the

three runs with each session were concatenated8 and then entered

into a time series regression model with a serial correlation model of

ARMA(1,1) for the residuals.

The effect estimate in percent signal change, combined with the

variance for the corresponding measurement errors, for the neutral

condition associated with angry face-emotion from the individual sub-

ject analysis, was adopted for comparing the five ICC models: ANOVA,

LME, RME, MME, and RMME. ICC(1,1) is not applicable in this case,

but both ICC(2,1) and ICC(3,1) and their F-statistics were computed for

each of the five models; the session effect and the corresponding t-sta-

tistic were also examined. The runtime was about one hour for each of

the analyses with 16 CPUs on a Linux system (Fedora 14) with Intel®

Xeon® X5650 at 2.67 GHz.

6.3 | Model comparisons

ANOVA renders a substantial number of voxels with negative ICC val-

ues (first column in Panel A, Figure 1; first row and first column in Fig-

ure 3), while LME provides virtually the same ICC estimates as

ANOVA, with primary difference that those negative ICC estimates are

replaced with 0 (uncolored voxels in the second column in Panel B, Fig-

ure 1; scatterplot cells (1, 2) and (2, 1) in Figure 3). It is worth noting

that a significant proportion of voxels with negative or zero ICC from

ANOVA or LME appear in gray matter. For RME, we tested four differ-

ent priors by varying the rate parameter j at values of 0, 0.1, 0.3, and

6The F-statistic is not exact in the cases of RME, MME, and RMME. How-

ever, it is important to note that the F-statistic would be an approximation

too even for ICC(1,1) and ICC(3,1) under ANOVA and LME since the mea-

surement errors are ignored.

7An outlier is defined as a data point where the distance between its value

and the overall mean (after trend removal) is above a thresholdffiffi
p
2

p
q21 0:001

T

� �
m, where qðxÞ512pðxÞ is the reversed Gaussian density func-

tion, T is the length of time series, and m is the median absolute deviation

of the time series.
8Despite the concatenation, the discontinuities across runs were properly

handled (Chen et al., 2012).
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0.5 (with h fixed at 2); their differences in ICC estimates across the

four j values are negligible. Furthermore, the computation cost is a

decreasing function of j (substantially highest at j50). In light of these

results, we set an empirical prior of gamma density (16) at h52;j50:5

for neuroimaging data, and the choice is also consistent with the simu-

lation results and recommendations in Chung et al. (2013).

For the voxels with negative ICC values from ANOVA or with zero

ICC values from LME, RME offers positive but generally small ICC esti-

mates; the nudging effect of RME is relatively small when the ICC value

from ANOVA/LME is positive but small (<0.3), and it is negligible

when the ICC value from ANOVA/LME is moderate or large (>0.3)

(third column in Panel A, Figure 1; scatterplot cells (1, 3) and (3,1) in

Figure 3). Some of the ICC estimates from MME are larger to varying

extent than ANOVA/LME/RME, while some are smaller (fourth column

in Panel A in Figure 1; “fat blobs” showing wide variation in the scatter-

plot cells (1, 4), (2, 4), (3, 4), and their symmetric counterparts in Figure

3); there are a higher number of voxels with larger ICC from MME

relate to ANOVA/LME/RME than those with smaller ICC values

(slightly redder voxels in fourth column than the first three columns,

Panel A in Figure 1; more dots with ICC greater than 0.75 on the MME

side of the green diagonal line in the scatterplot cells (1, 4), (2, 4), (3, 4),

and their symmetric counterparts in Figure 3). However, there are still

a large fraction of voxels with zero ICC estimates from MME (uncol-

ored voxels in the fourth column, Panel A, Figure 1), although less than

from LME. Last, RMME shares similar properties with MME relative to

ANOVA/LME/RME (fifth column, Panel A, Figure 1; scatterplot cells (1,

FIGURE 1 Panel A. ICC maps on an axial slice (Z526 mm, TT standard space; radiological convention: left is right) with a whole-brain
dataset through four models. The conventional ANOVA (first column) and LME (second column) rendered substantial number of voxels with
negative (blue) and zero (not colored) ICC values, respectively. Panel B. The F-statistic maps corresponding to each of the ICC maps in Panel
A are shown with colors in the range of [1, 10], with the lower bound of 1 defined by the formulation of F-statistic in (5). In each case, the
degrees of freedom were (24, 24) [Color figure can be viewed at wileyonlinelibrary.com]
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5), (2, 5), (3, 5), and their symmetric counterparts Figure 3). The differ-

ences between RMME and MME parallel those between RME and

LME (fifth column, Panel A, Figure 1; scatterplot cells (4, 5) and (5, 4),

Figure 3); that is, RMME provides small but positive ICC estimates for

those voxels with zero ICC under MME, and the nudging effect is negli-

gible when the effect estimate is relatively reliable. The F-values across

the five models follow roughly the same patterns as the ICC values

(Panel B in Figure 1) because the F formulation is closely related to its

ICC counterpart, and the high reliability measure in the brain shares the

same regions with group average effect revealed from the four mixed-

effects models (first two rows in Figure 2).

The differences between ICC(2,1) and ICC(3,1) (Panel A in Figure 1;

diagonal cells in Figure 3) are mostly small for each of the five models

except for those regions where session effect is substantial (third row,

Figure 2). Because any systematic differences between the two sessions

are accounted in the ICC(3,1), but not ICC(2,1), model, the former tends

to render slightly higher ICC estimates. This is demonstrated in Figure 3,

by the fact that most voxels are above the green diagonal line in the

diagonal cells of scatterplots. In addition, one noteworthy phenomenon

is that RMME narrows the differences between the two ICC types, as

represented in Figure 3 by the thinner band in scatterplot cell (5, 5) rela-

tive to the other diagonal cells. RMME tends to slightly overestimate

ICC(3,1) relative to MME due to regularization as shown in the cell (5,

4); in contrast, such an upward pooling effect on ICC(2,1) relative to

MME, as shown in the cell (4, 5), is slightly larger than ICC(3,1). The net

impact of these two small upward pooling effects seems to bring the

two ICC types close to each other, as shown in the cell (5, 5).

To gain better insights into the relative performances of the five

models, we demonstrate three scenarios with three representative vox-

els9 with Table 4 illustrating the differences among the five models and

with Figure 4 schematically showing the heterogeneity and heterosce-

dasticity at those three voxels (their effect estimates and their

FIGURE 2 The first two rows show the group average effect on an axial slice (Z526 mm, TT standard space; radiological convention: left
is right) with a whole-brain dataset estimated through the four mixed-effects models. The third row is the session effect in the ICC(3,1)
model. While the maps display the session effect, they are thresholded at a liberal significance level of 0.1 with 24 degrees of freedom for
the corresponding t-statistic. The estimates for the fixed effects are not directly available from ANOVA, and therefore are not displayed. As
the two regularization approaches estimate slightly higher variances under the ICC(2,1) model, some regions in the frontal area fail to sur-
vive the liberal thresholding for RME and RMME as shown in the first row. In contrast, all the four models demonstrate similar results under
the ICC(3,1) model as shown in the second row [Color figure can be viewed at wileyonlinelibrary.com]

9It might be neurologically more interesting to show the ICC in a few

regions, but here we chose these three voxels instead of regions to demon-

strate their subtle differences across ICC types as well as models.
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FIGURE 3 Comparisons across the five models and between ICC(2,1) and ICC(3,1) through scatterplots of ICC with the voxels in the brain.
The x and y axes are a pair of ICC values between two of the five models with their labels shown at the left (x axis) and top (y axis),
respectively. The 10 combinatorial comparisons for ICC(2,1) are illustrated in the upper triangular cells in black; the 10 combinatorial
comparisons for ICC(3,1) are listed in the lower triangular cells in blue; and the diagonals compare the two ICC types in red for each of the
five models with ICC(2,1) and ICC(3,1) as x and y axes, respectively. In each plot, the green diagonal line marks the situation when ICC
(2,1)5 ICC(3,1) [Color figure can be viewed at wileyonlinelibrary.com]
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variances are listed in Appendix A). At voxel V1 (from the right middle

occipital gyrus), the ICC estimates from the ANOVA, LME and RME

approaches are similar across all the five models. Both MME and

RMME estimates are not much different because those effect esti-

mates are roughly equally precise (first two columns in the right panel).

The ICC estimate for the two types do not differ much either as the

difference between the two sessions is small (�0.01% signal change,

Table 4).

At voxel V2 (from the right lingual gyrus) ANOVA produces nega-

tive ICC values because MSk <MSe in the corresponding ICC formula-

tion (Equation 2). LME avoides negativity by taking the lower boundary

value of zero that is allowed for variance, while RME renders a positive

but small ICC estimate. In contrast, both MME and RMME achieve

more accurate variance estimates in the sense that the availability of

variances for measurement errors provides a way to reallocate or redis-

tribute the components in the total variance. In other words, the sub-

stantial amount of heteroscedasticity as shown in Figure 4 (third and

fourth column in the right panel) allows differential weightings among

the effect estimates with a higher emphasis on the more precise ones

and downgrading for the less reliable ones. The dramatically different

ICC values at voxel V2 from MME and RMME, relative to the three

other ICC models, can be understood by examining the wide range of

effect estimates as well as their heterogenous variances, as shown in

the wide color spectrum of Figure 4. It is worth noting that the pres-

ence of substantial session effect (close to 0.1%, p55:731025) leads

to a moderate difference between ICC(2,1) and ICC(3,1) for MME, but

the analogous difference for RMME is negligible; that is, RMME tends

to render similar ICC value between the two types regardless of the

presence of session effect, just as shown in the whole-brain data (scat-

terplot cell (5, 5) in Figure 3).

Last, at voxel V3 (from the right lingual gyrus), ANOVA, LME and

RME reveal moderately reliable effect estimates with similar ICC esti-

mates. However, both MME and RMME render higher ICC values, due

to the presence of moderate amount of heteroscedasticity, similar to

the situation with voxel V2 even though less dramatic here (last two

columns in both panels, Figure 4). Also similar to voxel V2, the session

effect (�0.08%, p51:131025) results in a lower estimate from MME

for ICC(2,1) than ICC(3,1), but RMME estimates virtually the same reli-

ability between the two ICC types. It is also interesting to note that, at

both voxels V2 and V3, the t-statistic for the fixed effect of session is

much higher when the precision information is considered than in the

other two models, LME and RME (Table 4). This phenomenon demon-

strates the potential impact and importance of including modeling pre-

cision in neuroimaging group analysis (Chen et al., 2012; Worsley et al.,

2002; Woolrich et al., 2004).

7 | DISCUSSION

Reliability is a crucial foundation for scientific investigation in general,

and it has been a challenging issue and a hot topic for neuroimaging in

particular over the years (Bennett & Miller, 2010). ICC offers a metric

that can measure reliability under relatively strict circumstances. If the

same scanning parameters are applied to the same cohort of subjects

or families that undergo the same set of tasks, ICC shows the reliability

TABLE 4 Results at three example voxelsa shown in Figure 4

ICC(2,1) ICC(3,1) Session effect

Voxel Model Value F24;24 p value Value F24;24 p value Value t24 p value

V1* ANOVA 0.530 3.300 0.0024 0.530 3.300 0.0024 - - -

LME 0.531 3.292 0.0025 0.534 3.292 0.0025 0.012 1.144 0.26

RME 0.500 3.578 0.0014 0.552 3.468 0.0017 0.012 1.159 0.26

MME 0.504 3.033 0.0043 0.504 3.030 0.0043 0.008 0.786 0.44

RMME 0.529 3.246 0.0027 0.527 3.231 0.0028 0.008 0.789 0.44

V2 ANOVA 20.270 0.560 0.920 20.280 0.560 0.920 - - -

LME 0 1 0.5 0 1 0.5 0.073 1.469 0.15

RME 0.044 1.126 0.39 0.058 1.123 0.39 0.073 1.499 0.15

MME 0.470 4.464 2.5e-4 0.631 4.422 2.7e-4 0.091 4.876 5.7e-5

RMME 0.652 4.744 1.5e-4 0.649 4.693 1.7e-4 0.091 4.878 5.7e-5

V3 ANOVA 0.570 4.800 1.4e-4 0.660 4.800 1.4e-4 - - -

LME 0.574 4.819 1.4e-4 0.656 4.819 1.4e-4 0.080 3.372 0.0025

RME 0.509 5.072 8.9e-5 0.665 4.970 1.1e-4 0.080 3.398 0.0023

MME 0.743 13.851 5.8e-9 0.864 13.748 6.3e-9 0.076 5.52 1.1e-5

RMME 0.870 14.435 3.8e-9 0.870 14.344 4.0e-9 0.076 5.517 1.1e-5

aThe locations for the three voxels are the following (coordinates are in mm in TT space): V1: (39, 64, 26) in right middle occipital gyrus; V2: (11, 88,
211) in right lingual gyrus; V3: (11, 86, 26) in right lingual gyrus. Any fixed effects such as session difference here can be easily estimated through any
of the four mixed-effects models for ICC(3,1), but they are usually not provided through ANOVA.
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across the levels of a categorical variable such as twins, sessions, or

scanners. Nevertheless, in practice it is difficult to keep scanning cir-

cumstances perfectly constant across sessions in neuroimaging, thus

systematic differences may slip in one way or another. Additionally,

ICC can be applied to neuroimaging in the classic sense (i.e., inter-rater

reliability or concordance), assessing the reliability between two diag-

nostic approaches (e.g., human versus automatic method) on a disease

(e.g., schizophrenia, autism, or depression) or two different analytical

methods applied to the same collection of data.

As shown here, there are three types of ICC, each of which can be

estimated through various models such as ANOVA, LME, RME, MME,

and RMME. On one hand, the ICC metric offers a unique approach to

measuring the reliability of neuroimaging data under some well-

controlled conditions; on the other hand, the investigator may still face

a daunting job in deciding which ICC type, and which model, is most

appropriate to apply in a given experiment or setup. We have pre-

sented the different formulations of each here, and demonstrated dif-

ferences in data outcomes. We further discuss and summarize

recommendations for model selections below.

7.1 | Considerations for effect estimates as inputs for

ICC analysis

In practice, several factors can contribute to having poor data quality and

accuracy in neuroimaging. Having relatively low signal-to-noise ratio is a

major issue, and suboptimal modeling due to poor understanding of the

major components in the signal is another. By some estimates, less than

half (and in some cases down to 20%–30%) of data variability can be

accounted for in a typical fMRI data analysis at the individual level (Gon-

zalez-Castillo et al., 2017). Some rigor and standardization steps are

TABLE 5 A compact tcsh script that contains the succinct, selected afni_proc.py command used to generate the full processing pipeline
(>500 lines) in AFNI for this study

#!/bin/tcsh
# Set top level directory structure
set subjID5$1
set currDir5’pwd’
set anatDir 5./freesurfer.anat/${subjID}/mri
set epiDir5afni
set stimDir5stim.files
# miscellaneous parameters or options
set motion_max51.0; set delete_nfirst54; set costfunc5lpc1zz
# run afni_proc.py to create a single subject processing script
afni_proc.py -subj_id ${subjID}\
-script proc.script.FINAL.1.20.17.${subjID} -scr_overwrite\
-blocks despike tshift align tlrc volreg blur mask scale regress\
-copy_anat $anatDir/brainmask.nii\
-tcat_remove_first_trs $delete_nfirst\
-dsets $epiDir/r011orig $epiDir/r021orig $epiDir/r031orig\
-blur_size 5 -out_dir NL.results\
-anat_unif_GM no -anat_has_skull no -tlrc_NL_warp\
-volreg_align_e2a -volreg_align_to MIN_OUTLIER -volreg_tlrc_warp\
-align_opts_aea -cost $costfunc -giant_move -AddEdge\
-regress_stim_times\
$stimDir/${subjID}n_A_timing.1D\
$stimDir/${subjID}a50_timing.1D\
$stimDir/${subjID}a100_timing.1D\
$stimDir/${subjID}a150_timing.1D\
$stimDir/${subjID}n_F_timing.1D\
$stimDir/${subjID}f50_timing.1D\
$stimDir/${subjID}f100_timing.1D\
$stimDir/${subjID}f150_timing.1D\
$stimDir/${subjID}n_H_timing.1D\
$stimDir/${subjID}h50_timing.1D\
$stimDir/${subjID}h100_timing.1D\
$stimDir/${subjID}h150_timing.1D\
$stimDir/${subjID}w_timing.1D\
-regress_stim_labels\
n_A a50 a100 a150 n_F f50 f100 f150 n_H h50 h100 h150 w\
-regress_local_times -regress_censor_outliers 0.1\
-regress_basis ’BLOCK(2,1)’ -regress_censor_motion $motion_max\
-regress_est_blur_epits -regress_est_blur_errts\
-regress_reml_exec -regress_compute_fitts -regress_opts_3dD\
-allzero_OK -regress_opts_reml -GOFORIT\
-regress_make_ideal_sum sum_ideal.1D\
-gltsym ’SYM: 1n_A 1a50 1a100 1a150 1n_F 1f50 1f100 1f150 1n_H 1h50 1h100 1h150 ’\
-glt_label 1 Positive_Control
tcsh -xef proc.script.${subjID} |& tee proc.script.${subjID}.output

Note. To implement across the group, one simply loops through a list of subjects, entering the given file name as the sole command line argument,
which is passed to the variable $subjID. Here, stimulus variables are encoded as: h5happy, n5 neutral, f5 fearful, w5wrong; and each is followed by
the duration (50, 100, 150 s).
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required to achieve more accurate reproducibility and reliability. At pres-

ent, the cumulative impact of altering preprocessing and modeling strat-

egy in an analysis pipeline is largely unknown.

For example, it is well known that the absolute values of the fMRI-

BOLD signal from the scanner have arbitrary units with scaling fluctua-

tions among subjects, and therefore some kind of calibration is needed

during preprocessing if the effect estimates are to be used in further

analyses at the group level, for both typical group analysis and ICC esti-

mation. Such a calibration should take into consideration the fact that

the baseline varies across brain regions, subjects, groups, scanners, and

sites. However, radically different scaling strategies are in use, and their

effects at the group level remain unclear. For instance, the global or

grand mean scaling, as currently typically practiced and adopted by

some software packages, can only account for part of the cross-subject

variability; however, such approaches do not address the cross-region

variability within an individual brain as a practical reality in neuroimag-

ing scanning, and therefore, either may lead to difficulty in interpreting

and comparing the effect estimates. Analyses on networks including

ICC and causal modeling would be affected as well. In contrast, voxel-

wise scaling as a calibrator, even though imperfect due to the ambigu-

ity in the baseline definition (Chen, Taylor, & Cox, 2017b), provides a

more accurate characterization than the alternatives. Because of these

considerations, in general, we recommend voxel-wise mean scaling dur-

ing preprocessing, so that a directly interpretable and compatible mea-

sure in percent signal change can be adopted for the effect estimates

that are to be taken for group analysis including ICC.

Last, each effect estimate in task-related experiment is typically

derived from a model coefficient, and is intrinsically associated with

some extent of uncertainty that may vary across subjects. As the preci-

sion information of the single subject effect estimate (embedded in the

denominator of t-statistic) is required for the preferred MME and

RMME, it is important to model the temporal correlation in the resid-

uals at the individual level to avoid inflating the precision (or underesti-

mating the uncertainty) for the effect estimate to be used in the ICC

model. As for resting-state data, the precision information for the cor-

relation coefficient is not directly available. However, it is known that

FIGURE 4 Example illustrations of heterogeneity and heteroscedasticity at three voxels with results shown in Table 4. Effect estimates (left) during
the two sessions (r1 and r2) and the corresponding variances (right) for the measurement errors for the 25 subjects at three gray matter voxels (V1, V2,
and V3) from the axial slice shown in Figure 1. The real data are listed in Appendix A. Substantial session effect can be seen in voxel V2 (left matrix,
middle two columns) while the session effect is negligible at voxels V1 and V3. A large amount of variability exists for the effect estimates at voxel V1

(left matrix, first two columns), leading to negative ICC estimate by ANOVA and zero by LME, while RME manages to deal with the degenerative
situation with a small, but positive, ICC estimate. MME provides a positive and relatively large ICC estimate through weighting based on the precision

information (right matrix, first two columns). The variability for the precision of the effect estimate is moderate at voxel V2 (right matrix, middle two
columns), but minimal at voxel V3 (right matrix, right two columns) [Color figure can be viewed at wileyonlinelibrary.com]
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the Fisher-transformed Z-value for the correlation coefficient between

any two time series that are white noise approximately follows a Gaus-

sian distribution N 1
2 ln

11r
12r ;

1
T23

� �
(Sheskin, 2004), where r is the Pearson

correlation of two time series each having T time points. Therefore, 1
T23

is the lower bound for the variance of correlation coefficient in the

brain. Nevertheless, the variance is usually not expected to have a sub-

stantial variability across the brain and across subjects, and thus the

lack of precision information is not considered an issue for ICC compu-

tation with resting-state data analysis.

7.2 | Which ICC model to use?

Among the thousands of voxels in a typical whole-brain neuroimaging

dataset, negative ICC values unavoidably, and even frequently, show

up, though they are usually not reported in the literature. The standard

ICC values reported in most literature to date contain several aspects

of ambiguity, greatly hindering meaningful interpretation. In addition,

even when the ICC type is reported, its reason for selection, for exam-

ple, between ICC(2,1) and ICC(3,1), is usually not clearly explained. In

some cases, the chosen method is ill-suited to the given analysis sce-

nario (e.g., if ICC(1,1) was used between two sessions).

When precision information for the measurement errors of the

effect estimate is available, we recommend using RMME for the fol-

lowing three reasons: (a) the precision information offers a more robust

estimate for ICC, and for the fixed effects in the model; (b) the regulari-

zation aspect of the approach leads to the avoidance of the uninter-

pretable situation of a negative ICC from ANOVA or an unrealistic zero

ICC estimate from plain LME; (c) as demonstrated here (scatterplot cell

(5, 5) in Figure 3 and Table 4), RMME tends to be less sensitive to ICC

type selection, rendering roughly the same ICC estimate regardless of

the type the investigator adopts. When the precision information is

unavailable (e.g., when one has the correlation value as the effect of

interest from seed-based analysis or psycho–physiological interaction

analysis), we recommend using RME because of its capability to pro-

vide a realistic ICC estimate when ANOVA (or LME) renders negative

(or zero) ICC.

A general linear model (GLM), as extension to ANOVA, can accom-

modate between-subjects variables and assist the investigator in ICC

type selection. Therefore, the GLM is an intermediate approach

between ANOVA and LME. However, it still shares the other limita-

tions with ANOVA in the following aspects: rendering negative or zero

ICC, and being unable to handle missing data or to incorporate sam-

pling errors.

The use of a regularization approach may raise questions regarding

its insertion of arbitrariness into the estimation process with a prior for

the variance components. Each variance component in the ICC formula-

tion is estimated as a point value; however, it is worth noting that the

value of a variance component usually does not exactly fall at its numeri-

cal estimate, but varies within some range (e.g., 95% central or uncer-

tainty interval). The reason for a negative or zero estimate for a variance

component lies in the methodology of replacing the variance by a point

estimate; in other words, the substitution with a point estimate ignores

the fact that there is uncertainty associated with the estimate. As the

point estimate usually tends to be imprecise and underestimated, the

negative or zero variance estimate or ICC should not be taken at the

face value (Chung et al., 2013). A zero estimate for variance and ICC can

also cause inflated inferences on the fixed effects such as group average

as well as systematic differences across the factor A levels in the ICC

(3,1) model. More fundamentally, simply forcing a negative ICC or the

variance estimate for r2
k in Equation 2 to zero leads to an unjustifiable

claim that the effects from all the subjects are absolutely the same. On

the other hand, the regularization approach can be conceptualized as a

tug of war between the prior and data. As the results from our experi-

mental dataset demonstrate here (e.g., Figure 1), a weakly informative

prior for ICC estimation can pull a degenerate situation (e.g., zero var-

iance estimate) out of the boundary and render a more reasonable esti-

mate, while little impact will incur when the data contain strong

information, which would overrule the prior.

Four aspects of MME and RMME are worth highlighting here. First,

these two multilevel approaches estimate ICC differently from the other

three methods to some extent, as indicated in those “fat blobs” of Fig-

ure 3 among cells (1,4), (2,4), (3,4), (1,5), (2,5), and (3,5) for ICC(2,1), and

(4,1), (4,2), (4,3), (5,1), (5,2), and (5,3) for ICC(3,1). It should be stressed

that the focus here is not on which method leads to a higher or lower

estimate (nor should it be), but on which model provides a more accu-

rate characterization about the reliability measure. Second, just as the

levels of a within-subject factor are treated as simultaneous variables of

a multivariate model (as in the AFNI group analysis program 3dMVM)

for repeated-measures ANOVA in neuroimaging group analysis10 (Chen

et al., 2014), so are the factor A levels in MME and RMME for ICC(3,1)

modeled here in a multivariate fashion with the flexibility in variance

decomposition (Viechtbauer, 2010) and the capability to incorporate

quantitative covariates in the presence of a repeated-measures factor.

Third, the measurement errors associated with the factor A levels in a

generic model of the form in Equation 1 can be correlated when differ-

ent tasks are intertwined in the experiment, thus the variance–covari-

ance matrix R should be semi-definite in general. It is because of the

presence of covariances in R that the modeling approach adopted in

3dMEMA of AFNI and FLAME of FSL cannot instead be utilized to per-

form a paired test in cases where the two effect estimates are entered

separately as input (even if the program permits such an option), as the

measurement errors corresponding to the two effect estimates are usu-

ally correlated.11 However, R is actually a diagonal matrix in the neuroi-

maging ICC context, because the measurement errors can be

reasonably assumed to be well-approximated as independent with each

other (e.g., across runs or sessions). Finally, nonparametric methods

(e.g., bootstrapping, permutations) may offer a robust venue for control-

ling family-wise error for relatively simple models at the group level;

however, under some scenarios, parametric approaches provide more

specific and accurate characterization about the effect of interest

10Due to the complexity of handling within-subject factors, some group

analyses in published Neuroimaging literature are still not performed cor-

rectly, leading to substantial number of publications with inflated statistical

inferences (McLaren, 2010; Chen et al., 2014).
11Instead, such a paired test can be validly performed by taking the contrast

and its standard error as input.
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through some quantifying parameters (e.g., variance components in the

ICC context) in the model, which are currently both valid and irreplace-

able, as shown here with ICC computations through ANOVA, LME,

RME, MME, and RMME, and the group analysis approach through

incorporating the precision information (Chen et al., 2012; Woolrich

et al., 2004; Worsley et al., 2002).

7.3 | Which ICC type to adopt?

As there is usually one single effect estimate for each subject per scan-

ning situation, our discussion here focuses on single-measurement ICC.

Among the three ICC types, ICC(1,1) is likely the easiest to list the sce-

narios in which it can be applied. Primarily, it can be used when there is

no apparent distinction for a sequence of the levels for the factor that

is associated with the multiple measurements in the ICC model. It typi-

cally applies to the situation of studying twins, for example.

In contrast, the other two types are utilized for scenarios such as

having two or more runs, sessions, scanners, sites, or between parent

and child. The reliability from ICC(2,1) represents “absolute agreement,”

to the extent that the values exactly match between any two levels of

the factor A, while ICC(3,1) shows the consistency or the extent that

the effect estimates match across the factor A levels after accounting

for potential systematic differences or other fixed effects. In other

words, if the systematic differences across the levels of factor A are

negligible, then the two ICC estimates would be similar. On the other

hand, if the systematic differences or confounding effects are substan-

tial, then the ICC values tend to diverge to some extent, and they lead

to different interpretations. However, the existence of systematic dif-

ferences itself warrants further exploration about the source or nature

of those fixed effects (e.g., habituation or attenuation). For example,

what is the association between the ICC map and the activation map

(i.e., intercept in the model (Equation 14))?

Owing to the simultaneity of analyzing all the voxels, it is unrealis-

tic to choose one ICC type for some regions while selecting another

for the rest. Per the discussion here between ICC(2,1) and ICC(3,1), we

generally recommend the latter for whole-brain analysis. In doing so,

potential fixed effects are properly accounted for. More importantly, it

is not the ICC interpretation in the sense of absolute agreement that is

generally of primary importance, but the extent of agreement after

potential fixed effects are all explained. Furthermore, with ICC(3,1), the

investigator can directly address the following questions: (a) Which

brain regions show systematic effects across the levels of factor A? (b)

How do those systematic effects correspond to the ICC maps in these

regions? (c) Are the systematic effects related to some confounding

effects such as habituation or attenuation?

The overall decision tree for ICC computaton is summarized as a

flowchart in Figure 5.

7.4 | Result reporting

Clear and accurate scientific reporting is important for result reproduci-

bility, reliability and validity as well as for meta-analysis. The present

reporting conventions in neuroimaging are especially discouraging, with

a lopsided focus on statistics alone, for example, due to oversight or

limitations in software implementations (Chen et al., 2017b), leading to

incomplete reporting through the literature. It cannot be emphasized

enough that the effect estimates involved in a study should be

reported in addition to the statistical significance, and the same empha-

sis should be applied to ICC analysis. Specifically, the investigator

should explicitly state the ICC type and the model adopted, and the

justification for such choices. One may notice that the ICC formulation

for ICC(1,1) in Equations 11 and 12 is exactly the same as ICC(3,1) in

Equations 7 and 8, which means that reporting the ICC formula would

not be enough to reveal the whole picture because the two underlying

models (Equations 10 and 6) are dramatically different (and so are the

two resulting ICC estimates).

With regards to the criteria for reliability, a loose rule of thumb has

been suggested for ICC values as the following (Cicchetti, 1994): [0, 0.4),

poor; [0.4, 0.6), fair; [0.6, 0.75), good; and [0.75, 1], strong. One caution-

ary note is that a low ICC does not always mean poor reliability: it is pos-

sible that some confounding effects are not accounted for in the model.

For the statistical significance of ICC, one may use the Fisher transforma-

tion (Equation 4), or preferably, the F-statistic (Equations 5 and 9). Never-

theless, the F-statistic is not necessarily a basis for clusterization, but

together with the ICC value, it serves as some auxiliary information to

gauge the reliability about the effect of interest from the conventional

FIGURE 5 Flowchart of ICC modeling options [Color figure can be viewed at wileyonlinelibrary.com]
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analytical pipeline. Finally, all the fixed effects including the intercept

(group average) are crucial part of the model and should be discussed and

explained in the article as well, as exemplified here in Figures 1 and 2.

8 | CONCLUSION

One potential problem with the classic definition of ICC is that negative

ICC values may appear a scenario which is almost certain to show up in

a whole-brain neuroimaging analysis. Here we extend the conventional

ICC definition and its computations to the frameworks of LME, RME,

MME, and RMME modeling to address this issue and other difficulties.

Such an extension not only offers wider modeling flexibility such as the

inclusion of various fixed effects but also avoids the interpretability

problem of negative ICC values under ANOVA. We offer our recom-

mendations in model adoption and ICC type selection and also in result

reporting. All modeling strategies and ICC types and the estimation and

statistic testing for the fixed effects are currently available in the AFNI

program 3dICC.
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APPENDIX A

FMRI PROCESSING

The general sequence of fMRI data preprocessing steps was described

in the subsection “Experimental testing dataset” under the section “Per-

formance comparisons among the models.” However, for greater speci-

ficity and reproducibility, in this Appendix, we also include the exact

afni_proc.py command in AFNI (version AFNI_16.3.06) that was imple-

mented to create the full processing pipeline. While there are several

processing steps specified, each with many user-chosen options, it is

possible to provide the exact pipeline in a succinct manner because the
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processing steps and options were created and specified using afni_-

proc.py in AFNI. This tool permits the user full freedom to tailor a

desired pipeline that may be reliably duplicated for the entire group,

stored for future reference and published with a study for unambigu-

ous description.

APPENDIX B

Data at three voxels from 25 subjects with
two sess ions that are i l lustrated12 in Figure
4 and Table 4

Voxel V1 V2 V3

Session 1 2 1 2 1 2

Data y1j r̂2
1j y2j r̂2

2j y1j r̂2
1j y2j r̂2

2j y1j r̂2
1j y2j r̂2

2j

S1 0.075 0.013 20.067 0.015 1.164 0.147 0.529 0.098 0.621 0.030 0.217 0.036

S2 0.160 0.006 0.081 0.004 0.705 0.016 0.100 0.026 0.407 0.018 20.111 0.012

S3 0.101 0.006 0.084 0.009 20.862 0.262 1.121 0.354 0.473 0.018 0.541 0.014

S4 20.055 0.006 20.041 0.004 0.297 0.050 0.113 0.014 0.012 0.008 20.042 0.004

S5 0.075 0.010 0.053 0.010 0.416 0.031 0.412 0.044 0.036 0.011 20.074 0.017

S6 0.282 0.009 0.199 0.010 0.590 0.012 0.166 0.019 0.906 0.011 0.539 0.014

S7 20.012 0.014 0.273 0.010 1.042 0.038 0.727 0.030 0.486 0.012 0.506 0.008

S8 0.123 0.002 0.334 0.003 0.321 0.014 0.563 0.098 0.715 0.011 1.056 0.019

S9 20.079 0.013 20.213 0.013 0.366 0.012 20.023 0.014 0.276 0.008 0.067 0.007

S10 20.040 0.010 20.127 0.015 0.705 0.026 0.734 0.028 0.439 0.015 0.331 0.020

S11 0.157 0.010 0.135 0.005 0.758 0.141 20.033 0.159 0.280 0.013 20.072 0.008

S12 0.056 0.004 20.120 0.002 0.588 0.028 0.683 0.072 0.449 0.009 20.052 0.005

S13 0.224 0.010 0.114 0.007 0.403 0.031 0.185 0.016 0.201 0.016 20.294 0.015

S14 0.024 0.003 20.007 0.003 0.713 0.016 0.501 0.021 0.453 0.011 0.061 0.013

S15 0.107 0.009 0.077 0.005 0.453 0.013 0.283 0.008 0.066 0.018 0.001 0.007

S16 0.182 0.008 0.160 0.006 1.120 0.020 0.303 0.017 0.438 0.011 0.019 0.006

S17 0.035 0.003 0.000 0.003 0.648 0.008 0.577 0.006 0.569 0.007 0.382 0.008

S18 0.014 0.003 20.057 0.007 0.872 0.024 0.189 0.036 0.264 0.005 20.025 0.009

S19 0.151 0.004 0.200 0.003 0.436 0.006 0.616 0.005 0.343 0.005 0.306 0.003

S20 0.165 0.004 0.020 0.003 0.278 0.007 0.386 0.009 0.398 0.004 0.434 0.007

S21 0.136 0.010 0.151 0.009 0.318 0.034 0.318 0.025 0.141 0.017 0.267 0.015

S22 0.165 0.012 0.177 0.021 20.004 0.027 0.444 0.046 0.043 0.012 0.242 0.013

S23 0.005 0.005 0.085 0.003 0.410 0.005 0.217 0.016 0.322 0.004 0.313 0.005

S24 0.213 0.009 0.061 0.009 0.663 0.016 0.493 0.017 0.938 0.015 0.517 0.014

S25 0.059 0.010 0.132 0.008 1.191 0.011 0.318 0.012 0.324 0.008 0.001 0.011

12To save space, the data shown here are rounded to the nearest thou-

sandth, therefore there may have some small differences with the results

listed in Table 4.
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